
i_::[
: : 7:;: ::771 Z:-2!_:-- __7 2

•:-:-i,/D'C; _ _J -:_/ 'i:-__ /

t

"

u

i=

=

DOCUMENTATION FOR THE TOKEN
RING NETWORK SIMULATION

S YS TEM

(NASA-CR-188093) DOCUMENTATION FOR THE

T_K_N RING NETWORK SIMULATION SYSTEM

(Houston Univ.) 24 p CSCL 09B

Jeffery H. Peden
Alfred C. Weaver

N91-21789

uncl as

0007594

Digital Technology

....... November 1990

Cooperative Agreement NCC 9-16

Research Activity No. SE.31

NASA Johnson Space Center

Engineering Directorate

Flight Data Systems Division

o ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

m

J

W

J
J

2-

= =

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershipwith JSC tojointly define and manage an integratedprogramof research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreedand entered into
a three-yearcooperative agreement with UH-ClearLake _n_g_n May, 1986,to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and eduotional facilities areshared
by the two i_titutjons to conduct the r_earch.

The mission of RICIS is to conduct, coordinate and disseminate research On
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Ctear
Lake, the mission is being implemented through interdisciplina_ involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

_ =_

=l

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Jeffery H. Peden, Alfred C. Weaver and

Digital Technology. Dr. George Collins, Associate Professor of Computer

Systems Design, served as RICIS technical representative for this activity.

Funding has been provided by the Engineering Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Frank W. Miller, of the Systems Development Branch, Flight Data

Systems Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

Documentation

for the

Token Ring Network Simulation System

Jeffery H. Peden
Alfred C. Weaver

Digital Technology
Charlottesville, Virginia

rrma

u

J

W

u

w

Introduction

This manual describes the language features of the Token Ring Network Simulation Sys-

tem. The simulation system is a powerful simulation tool for token ring networks which allows

the specification of various MAC layer protocols as well as the specification of various features

of upper layer ISO protocols. In addition to these features, it also allows the user to specify mes-

sage and station classes virtually to any degree of detail desired,

The choice of using a language instead of an interactive system to specify network parame-

ters was dictated by both flexibility and time considerations. Certainly an interactive system is

immediately usable whereas_a ianguiigebased System requires prior study, but after the language

is learned (only about an hour of study is required for this particular language), it takes less time

to use than an interactive system. Also, it is possible to be more detailed with less effort if a

language is used rather than an interactive system.

The language presented here was developed specifically for the simulation system, and is

very simple. It is also user friendly in that language elements which do not apply to the case at

hand are ignored rather than treated as errors. A third feature of this language is its self docu-

menting feature m a glance at the written language allows the user to immediately see what net-

work configuration is being programmed.

U

mlm

Purpose of the Simulation System

The purpose of any simulatioffsystem is to enable the network designer and operator to

predict certain operating characteristics of a network without actually using the network: the main

purpose of this simulation system is no different. What is different, however, is the scope of net-

work activity covered by the simulator.

This simulation system is intended not only to simulate the MAC layer of a network, but

also to simulate the message processing layers which feed into and take messa_ges from__the MAC

layer. This allows the network designer to gain a more accurate picture of the actual end-to-end

delay encountered by a typical message.

The system is also intended to simulate a more accurate representation of message traffic

than most other systems. This system allows the user to set up various message classes and prior-

ities, thus gaining a better view of the actual operational characteristics of the network.

Structure of the Simulation System

The structure of the simulation system is modular in nature. A token ring netw0_k has two

distinct operational characteristics: the MAC layer operation, which is dependent on the token

cycle; and the upper layer operation, which is not. The simulation system's structure and opera-

tional characteristics reflect this dual nature of a ring network. There is a module for MAC layer

operation, and one for the upper layer operation (each upper layer is sufficiently similar in opera-

tion that it is not necessary for each layer to be a separate module).

The coupling of procedures within modules and between modules is very loose since there

are no global variables m information is passed between procedures and functions only via

parameters. The only global information consists of the various type definitions. The modules

themselves exhibit a mix of functional and temporal cohesion.

w

I

W

!

I

m
L

m

m

W

1IF

w

W

W

w

s

w

Internal Operation of the Simulation System

The simulation system is a continuous time discrete event simulator. The events which

drive the simulation are the token arrivals at the network stations, and message transmissions

(note that the movement of a message from one network layer to another is considered to be a

message transmission). The internal, or logical time of the simulator is a floating point variable

which is in units of bit times, and is updated whenever an event occurs.

Each token arrival event triggers various internal simulator events, such as message

transmission, message enqueueing, delay and queue length measurements, upper layer process-

ing, and logical-time clock updating. Messages are enqueued and dequeued by adding and delet-

ing nodes from linked lists. The network itself is represented as multi-dimensional array, one

index of which is considered to be the network stations. Each cell of the array contains pointers

to various linked lists, such as the linked lists of messages enqueued at each message processing

layer. The circulation of the token is caused by circular indexing of the array of network stations.

Example Program

The following is an example input f'tle for use with the token ring simulator.

--7

= =

input file for simulator program

general

this configuration is simple --

every station participating
all messages enter the network

FDDI

iterations 6

stations i0

circumference i00.0

bps i00000000

latency 32
simulation 0.02

rho 95.0

threshold 0 9.5

#

only a single class

at the MAC layer

of messages, wit

Qm

--3--

class related stuff

#

class 0

#

includes all

enter mac

load I00.0

length 32

priority 0 I00.0

messages deterministic

arrivals poisson

g

i

M

U

mmm

m

m

z
V

wm

mm

V

W

_m

g

g

Language Description

This language allows the user to set up a simulation with detailed information concerning

the number of ring stations, classes of messages, arrival and service distributions for classes, etc.

Classes and stations are entirely orthogonal -- there may be multiple stations per message class,

and multiple message classes per station. This feature allows the maximum flexibility when set-

ting up a simulation.

All input between a # and a newline character is ignored, thus allowing for comments.

--Sw

General Network Commands

There are several netwo_-wide specification commands. These are

FDDI

iterations N

stations N

circumference

meters N X

bps N

latency N

simulation X

the X

threshold N X

tokenho!d X

preemption

X

The symbol N indicates an integer value, and the symbol

(floating point values are not required, however).

X indicates a floating-point value

The notation FDDI allows the user to specify which mac layer protocol is to be used

(currently only the FDDI network may be selected).

iterations N specifies the number of independent replications of the simulation that

are to be done. This allows whatever statistical significance the user desires.

stations N specifies the number of stations on the network.

circumference X sets the total ring circumference, where x is expected to be in

meters. A floating point value is allowed. The distance between any two stations is found by

dividing the circumference by the number of stations, subject to the meters N X command.

meters N X allows the specification of the distance between any two stations on the

ring, with XR in meters. The command meters 34 4.5 has the effect that the dis-

tance from ring station 34 to ring station 35 is 4.5 meters. This overrides the effect of the cir-

cumference command. A further effect of this command is that the distances between all

other stations are automatically adjusted so that the total circumference remains as specified in

the circumference command. The meters command may be repeated as many times as

w

W.

I

,ib

im

U

W

J

V

w

W

lira

--6--

g

is necessary. It may also be used exclusively without the circumference command.

bps N sets the data rateof the ring m bits per second. The MAC layer protocols in the

simulation system do not assume a default value (even if the protocol being simulated requires a

certain value), so this command must be used.

latency N controls the value of the internal station latency. The value is in bit times.

For the FDDI protocol, this value varies with the manufacturer of the chipset.

s imulat ion X sets the number of seconds of simulation time (with x in seconds), e.g.,

3.0 seconds, 0.02 seconds, etc. Note that this is not real time, but rather internal simulator time.

The simulator typically takes much longer than 0.2 seconds, for example, to simulate 0.2 seconds

of network operation. (This is due to the fact that the simulation is done on a uniprocessor,

whereas networks inherently have many processors implementing their own local protocol func-

tions.)

rho X sets the value of the overall network load as a percentage. A floating point value is

expected, and may be greater than 100.0 if overload conditions are to be simulated.

The command threshold

priority threshold for priority N at

has been selected.

N X is MAC layer protocol specific. This command sets the

X milliseconds. This only has an effect if the FDDI protocol

The preemption command controls the priority operation in the upper layers. If

present, higher priority messages preempt the processor from lower priority messages. If absent,

messages are processed in their entirety, and then the highest priority waiting message is pro-

cessed.

--7--

=

II

Message Class Specific Commands

The class information commands allow different classes of messages to be configured. Any

number of classes may be specified. There may be many stations having message class K, and

there may be many message classes at any particular station. Note that we are defining message

classes, not station classes. This mechanism is sufficiently general, however, that station classes

may be defined using this method merely by having any particular station only offer a single

message class to the network.

The class commands are
Ill

class N

includes jail, even,odd, Nl [N2 ...], [N3-N4]]

enter [mac, llc, network, transport, session, presentation, application] "

load X

length N

priority N X _ m,
messages [uniform, constant, exponential]

arrivals [poisson,deterministic,uniform]

class N beans the definition for message class N,where N can be any arbitrary number

(classes do not have to be numbered in order, and class numbers may be left out, so long as there w

is at least one class). The other class commands which follow apply to message class N until
i

another class N command is encountered.

Stations which handle message class N are specified by the includes command. The

command includes all specifies that all network stations offer this class. Similarly, --

includes even and includes odd specify that only even or odd stations respectively

offer this class. It is possible to specify arbitrary stations by includes 2 4 7 9 32, for -,

example, which says that stations 2, 4, 7, 9, and 32 offer message class N (any number of stations

may be specified in this manner). The notation includes [2-14] indicates that stations 2

through 14 offer this message class.
I

W

--8--

v

7

tr

E

=

The above station specification commands may be combined, with the result that the union

of the specifications is the group of included stations. That is, the command includes even

3 5 41 results in all even numbered stations offering message class N, as well as the additional

stations 3, 5, and 41. The command includes even odd is identical to the command

includes all. The command includes odd [2-!0] results in all odd stations being

included as well as stations 2, 4, 6, 8, and 10 (stations 3, 5, 7, and 9 were already included).

enter indicates at which level of the protocol Stack messages of the currently defined

class enter (and leave).

load × specifies the offered load, expressed as the percentage of rho (see above) this

message class contributes.

length N specifies the mean length of messages of this class in bytes.

priority N X sets the percentage of load (see above) that priority N messages of

Note that not all priority levels need be represented in any particularthis class axe to _ceive.

message class.

messages indicates the message lengtla distribution. arrivals indicates the arrival

process distribution. Other distributions will probably be added in the near future. Currently the

simulator will not handle a trace (this feature can be added if it is deemed necessary or desirable).

u
v

=__

M

Upper Layer Specific Commands

The upper layer commands are

application

presentation
session

transport
network

llc

u
V

l

m

Note that if these commands ate preceded by the command enter they are not upper

layer commands. All upper layer commands must be included that are equal to or below the

highest entry layer of any message class.

Each upper layer command must befollowed by

send X X

rec X X

framing N

and may also optionally be followed by

m

w

segment N

Each of send X X, rec X X, framing N, and segment N allcontroltheseparameters

for the immediately preceding layer specification.

send X X and rec X X indicate (a) the call time overhead (essentially the time needed

for the target processor to implement a procedure call), and Co) the processing time per byte for

that layer (this is independent of message class and priority since this is a hardware/software

issue). The command send 5.0 200.0 means that the call time overhead is 5.0 miI=

liseconds, and the processing time per byte is 200.0 nanoseconds, rec 3.0 500,0 has a

similar interpretation. The f=aming N command results in N bytes of framing being added to

the message. Note that message length has already be specified using the class commands; the

result is that aLl framing added in upper layers f'tlls out the message to be the final specified

length. The segment: N command, if present, specifies that messages of length greater than N

-- 10--

m

w

=

w

m

w

J

r,a are to be segmented at that layer. If absent, no segmentation takes place.

u

m

I •

Simulator Output

Simulator output is sent to the screen unless it is redirected using the notation simulate

<ftlename>. As the simulator runs, its progress (relative to the length of the simulation) is

sent to the screen regardless of whether or not the simulator out'put is to be sent to the screen.

The command s±mutate resultst causes the simulator output to be written to the file

"results I"

w

_a

v

The user need not be concemed with overwriting an existing file by accident, because if the

file used in the simulate <filename> already exists, the new results are appended to its

end. The date and time of the simulation are prepended to the results in all cases. If the user

wishes the output sent to the screen, the command simulate is used. This is, however, unwise

(unless, for example, a log file is being created) since the output in all cases takes up more than

24 lines (a typical screen length).

The following is an example output file.

m
w

W

m

W

Sun Aug 20 17:17:13 EDT 1995

entry layer offered load - 0.960
mac level offered load - 0.497

mac throughput - 0.497

end throughput - 0.016

token cycle time - 1.524e-05

mac queue length - 1.380e+00

LLC layer queue length:
transmit - 1.154e+00

receive -"0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:
transmit - 9.323e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

-- IZ--

M

qm

B

W

7_

n

m

u

L

LJ

=

- i

transmit - 3.332e-03

receive - 0.000e+00

NETWORK layer queueing delay:
transmit m 0.000e+00

receive - 0.000e+00

LLC layer queueing delay:

transmit - 6.531e-03

receive - 0.000e+00

queueing delay _ 5.248e-05

net access delay - 3.8i2e-05

mean wait delay - 9.059e-05

priority 6

token cycle time = 1.524e-05

mac queue length _ 6.864e-02

LLC layer queue length:

transmit - 4.515e-01

receive - 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:

transmit - 3.78!e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.609e-03

receive - 0.000e+00

NETWORK layer queueing delay:

transmit - 0.000e+00

receive - 0.000e+00

LLC layer queueing delay:

transmit - 6.808e-03

receive - 0.000e+00

queueing delay - 2.424e-03

net access delay - 2.196e-03

mean wait delay - 4.620e-03

class 1

mac queue length - 6.864e-02

LLC layer queue length:

transmit - 4.515e-01

receive - 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:

transmit - 3.781e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.305e-03

receive - 0.000e+00

NETWORK layer queueing delay:

transmit - 0.000e+00

-- 13--

receive - 0.000e+00

LLC layer queueing delay:
transmit = 6.504e-03

receive = 0.000e+00

queueing delay - 2.424e-03

net access delay - 2.196e-03

mean wait delay = 4.620e-03

priority 7

token cycle time = 1.524e-05

mac queue length - 7.599e-02

LLC layer queue length:

transmit = 6.629e-01

receive = 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:
transmit - 5.442e+01

receive = 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.532e-03

receive = 0.000e+00

NETWORK layer queueing delay:

transmit - 0.000e+00

receive - 0.000e+00

LLC layer queueing delay:

transmit - 6.731e-03

receive - 0.000e+00

queueing delay - 3.144e-03

net access delay - 2.300e-03

mean wait delay - 5.444e-03

class 1

mac queue length - 7.599e-02

LLC layer queue length:

transmit - 6.629e-01

receive - 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:

transmit - 5.442e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.108e-03

receive - 0.000e+00

NETWORK layer queuelng delay:

transmit - 0.000e+00

receive s 0.000e+00

LLC layer queueing delay:

transmit - 6.307e-03

-- 14--

W

Imm

g

mew

mm

i
w

m

L_

c

g

I

w

l

I

m

w

rl

L_

4

receive - 0.000e+00

queueing delay - 3.144e-03

net access delay - 2.300e-03

mean wait delay - 5.444e-03

priority 8

token cycle time - 1.524e-05

mac queue length - 1.306e+00

LLC layer queue length:

transmit - 7.780e-01

receive - 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.000e+00

TRANSPORT layer queue length:

transmit - 4.640e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.529e-03

receive - 0.000e+00

NETWORK layer queueing delay:

transmit - 0.000e+00

receive - 0.000e+00

LLC layer queueinq delay:

transmit - 6.728e-03

receive - 0.000e+00

queueing delay - 3.111e-05

net access delay - 2.116e-05

mean wait delay - 5.227e-05

class 0

mac queue length - 1.278e+00

queueing delay - 4.856e-06

net access delay - 1.074e-05

mean wait delay - 1.560e-05

class 1

mac queue length - 5.566e-02

LLC layer queue length:
transmit - 1.530e+00

receive - 0.000e+00

NETWORK layer queue length:

transmit - 0.000e+00

receive - 0.'000e÷00

TRANSPORT layer queue length:

transmit - 9.125e+01

receive - 0.000e+00

TRANSPORT layer queueing delay:

transmit - 3.470e-03

receive - 0.000e+00

NETWORK layer queueing delay:

transmit - 0.000e+00

receive - 0.000e+00

--15--

LLC layer queueing delay:
transmit - 6.669e-03

receive - O.O00e+O0
queueing delay = 3.253e-03

net access delay - 1.403e-03

mean wait delay - 4.656e-03

W

U

Most of the output is self-explanatory. The units used are seconds for delay, and packets for

queue length. Note that if segmentation has taken place_ the queue lengths are given in units of

the reduced-length packets, not the original length packets. At the beginning of each output the

date and time of the simulation run is given.

The notation

tra layer delay = 3.039e-03

rec tra layer delay = O.O00e+O0

is interpreted as stating that the transport layer clueueing delay when sending packets was

3.039e-03 seconds, and the transport layer queueing delay when receiving packets was 0.0

seconds. That is, any line beginning with rec indicates the measurement was taken at the

receiving station. Any line not beginning with tee indicates the measurement was taken at the

sending station.

Output is given first as an Overall weighted average. Then it is broken down first by prior-

ity, and withing each priority level it is broken down by class. That is, if priority level 6 was

included in both Class 2 and Class 7, then class 2 and class 7 data would be given under priority

level 6. Output could have easily been sorted first by class and then by priority level; the method

used here was arbitrarily chosen.

u

J

I

E_

w

J

:-.._
m

U

IP

W

J

_q

U

-- 16--

W

WB

w

w

Mapping Actual Configurations to Simulation Language Code

It is a relatively simple matter to map an existing network configuration and message traffic

distributions into the simulator programming language described above. Most of the commands

of the language are self explanatory, e.g., the circumference X command, which allows the

user to specify the total ring circumference. This can be further modified using the meters N

X command to specify individual distances between stations. Using the class N commands,

each station can be tailored to contribute the desired message traffic to the network load.

One problem that is inherent to simulation systems, but that may not be obvious at first

sight is the fact that large demands are made on the computer performing the simulation in terms

of both time and memory. It may happen that a perfectly legal simulation configuration may run

on one machine but not on another due to the fact that the second machine lacks sufficient

memory. Unfommately, there is no way to solve this problem -- it is up to the user to see that

the computer on which the simulation is run has sufficient memory to allow the simulation to be

completed.

As an example, consider the following simulator programming language code fragment:

z

class 0

includes 0 3 7 [10-14]
enter llc

load 65.0

length 32

priority 0 I00.0

messages deterministic

arrivals deterministic

#

class 1

includes 1 2 4 5 6 8 9

enter tra

load 35.0

length 128

priority 0 i00.0

messages exponential

arrivals poisson

-- 17--

This code fragment configures a network with two classes of messages. The first class enters at w

the LLC layer, contributes 0.65 of the total offered load of the simulation, has only a single prior-

ity level, and has deterministic message lengths and message arrival times. The second class w

enters at the transport layer, contributes 0.35 of the total offered load of the simulation, has a sin-

gle priority level, and has exponentially distributed message lengths and a poisson arrival process

for messages.

It would be a simple matter to add another message class such that at least some of the net-

work stations offered more than a single message class to the network by the following code:

g

class 2 w
includes even 7

enter llc

load 15.0

length 64

priority 0 I00.0

messages deterministic

arrivals poisson

Note that the load X command on at least one of the two previous message classes would have

to be adjusted so that the total class load totals 100% of the total offered load of the simulation.

Also not that if the code for class 2 had indicated two priority levels, class 2 would actually be

two message classes -- one for each priority level. This method would be a shorthand way of

specifying two message classes which differed only in their priority level.

To control the simulation of the upper layers, we might have the following code fragment:

J

W

J

U

U

#

-- 18--

m

m

#

process times for layers

independent of class -- hardware�software dependent

mac layer processing is computed by the simulation

#

send and receive times are: ms to call, ns per byte in that

framing is in bytes

transport

send 1.O 150.0

rec 1.0 i00.0

framing 30

network

send 0.0 0.0

rec 0.0 0.0

framing 0

llc

send 0.0 i000.0

rec 0.0 I00.0

framing 6

order

w

This fragment configures the upper layer call time and processing time, as well as giving the

amount of framing each layer contributes to message length. In the above configuration, the net-

work layer has been rendered inactive by set-ring all of its parameters to zero.

It should be noted that this fragment need not apply only to a network which uses the OSI

protocols. The network to be simulated may be one that only has three levels of protocol opera-

tion. In this case the "transport" layer would simply be interpreted as the highest network pro-

cessing layer, and the "LLC" layer would be the lowest. Thus layers need not be mapped to the

corresponding OSI layers, but to any layer the user wishes merely by "reassigning" the names in

the simulator programming language to the needed network layers.

w

19m

Booting the Simulator

To compile the simulator, performthe following steps:

1) load the files into a single directory

3) type!ex analyze.!ex

4) typecc -o analyze lex.yy.c -ll

The simulator is now compiled. It is not necessary to perform the above four steps again

unless the simulator code has been updated.

The configuration to be simulated is compiled by performing the following steps:

I)editthedesiredconfigurationfile

2)typeparse <configuration file>

The parsed configuration will be the one simulated. It is necessary to re-parse the configuration

file each time the simulator is run.

To run the simulator using the desired co_guration, type

simulate <output file>

This will send the results of the simulation to the f'de named <output file>. Moreinforma-

tion on running the simulator can be found in the language description.

D

I

J

r

I

=--
W

U

i

...-.
z

g

I

m

Ill

g

U

